Background
Attrition is common in alcohol clinical trials and the resultant loss of data represents an important methodological problem. In the absence of a simulation study, the drinking outcomes among those who are lost to follow-up are not known. Individuals who drop out of treatment and continue to provide drinking data, however, may be a reasonable proxy group for making inferences about the drinking outcomes of those lost to follow-up.
Methods
We used data from the COMBINE study, a multisite, randomized clinical trial, to examine drinking during the four months of treatment among individuals who dropped out of treatment but continued to provide drinking data (i.e., “treatment dropouts;” n=185). First, we estimated the observed treatment effect size for naltrexone versus placebo in a sample that included both treatment completers (n=961) and treatment dropouts (n=185; total N=1146), as well as the observed treatment effect size among just those who dropped out of treatment (n=185). In both the total sample (N=1146) and the dropout sample (n=185), we then deleted the drinking data after treatment dropout from those 185 individuals to simulate missing data. Using the deleted datasets we then estimated the effect of naltrexone on the continuous outcome percent heavy drinking days using six methods to handle missing data (last observation carried forward, baseline observation carried forward, placebo mean imputation, missing=heavy drinking days, multiple imputation (MI), and full information maximum likelihood (FIML)).
Results
MI and FIML produced effect size estimates that were most similar to the true effects observed in the full data set in all analyses, while missing=heavy drinking days performed the worst.
Conclusions
Although missing drinking data should be avoided whenever possible, MI and FIML yield the best estimates of the treatment effect for a continuous outcome measure of heavy drinking when there is dropout in an alcohol clinical trial.