2014
DOI: 10.1016/j.jalgebra.2014.08.010
|View full text |Cite
|
Sign up to set email alerts
|

FIW-modules and stability criteria for representations of classical Weyl groups

Abstract: In this paper we develop machinery for studying sequences of representations of any of the three families of classical Weyl groups, extending work of Church, Ellenberg, Farb, and Nagpal [CEF12], [CEFN14] on the symmetric groups S n to the signed permutation groups B n and the even-signed permutation groups D n . For each family W n , we present an algebraic framework where a sequence V n of W n -representations is encoded into a single object we call an FI W -module. We prove that if an FI W -module V satisfie… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

1
42
0

Year Published

2015
2015
2022
2022

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 40 publications
(43 citation statements)
references
References 34 publications
1
42
0
Order By: Relevance
“…Church [7] showed representation stability of the rational cohomology of ordered configuration spaces using a Leray spectral sequence and the partition lattice. We generalize his method of using this spectral sequence for other types of arrangements by combining it with our combinatorics and with FI W -module theory developed by Wilson [16,15]. Wilson [16] also showed representation stability for each linear case.…”
Section: Introductionmentioning
confidence: 90%
See 2 more Smart Citations
“…Church [7] showed representation stability of the rational cohomology of ordered configuration spaces using a Leray spectral sequence and the partition lattice. We generalize his method of using this spectral sequence for other types of arrangements by combining it with our combinatorics and with FI W -module theory developed by Wilson [16,15]. Wilson [16] also showed representation stability for each linear case.…”
Section: Introductionmentioning
confidence: 90%
“…Throughout this section, we let W n denote either the symmetric group S n (type A) or the hyperoctahedral group W n (type B/C). For more details on the theory, we refer the reader to [8,9] for the case of S n (and much more) and [15,16] for the case of W n (as well as the type D Weyl group).…”
Section: Representation Stabilitymentioning
confidence: 99%
See 1 more Smart Citation
“…Historically, the Noetherian property was proven for FI-modules over a field of characteristic 0 in [CEF,Theorem 1.3] and independently by Snowden in [S,Theorem 2.3], and over a general Noetherian ring in [CEFN, Theorem A]. The case G = Z/2Z was proven in [JW,Theorem 4.21]. The paper [SS2] proves the theorem for all polycyclic-by-finite groups G.…”
Section: Proofmentioning
confidence: 98%
“…The work in this paper therefore provides a new proof of the bounds given in [CEF,Theorem 3.3.4] and [JW,Theorem 4.16], while providing a novel bound in the cases where k is a general field or where G = 1, Z/2Z. Definition 2.1.…”
mentioning
confidence: 99%