Very neutron-deficient nuclei are investigated with Woods-Saxon potentials, especially the newly measured A=2Z–1 nucleus 65As [X.L. Tu et al., Phys. Rev. Lett. 106, 112501 (2011)], where the experimental proton separation energy is obtained as -90(85) keV for the first time. Careful consideration is given to quasibound protons with outgoing Coulomb wave boundary conditions. The observed proton halos in the first excited state of 17F and in the ground states of 26,27,28P are reproduced well, and predictions of proton halos are made for the ground states of 56,57Cu and 65As. The sensitivity of the results to the proton separation energy is discussed in detail, together with the effect of the ℓ=1 centrifugal barrier on proton halos.