The spin liquid phase is one of the prominent strongly interacting topological phases of matter whose unambiguous confirmation is yet to be reached despite intensive experimental efforts on numerous candidate materials. Recently, a new family of correlated honeycomb materials, in which strong spin-orbit coupling allows for various bond-dependent spin interactions, have been promising candidates to realize the Kitaev spin liquid. Here we study a model with bond-dependent spin interactions and show numerical evidence for the existence of an extended quantum spin liquid region, which is possibly connected to the Kitaev spin liquid state. These results are used to provide an explanation of the scattering continuum seen in neutron scattering on α-RuCl 3 .