2020
DOI: 10.1049/iet-pel.2020.0087
|View full text |Cite
|
Sign up to set email alerts
|

MMLSTOGI based control for suppression of current harmonics in PV‐tied grid

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
5
0

Year Published

2021
2021
2023
2023

Publication Types

Select...
2
2

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(5 citation statements)
references
References 23 publications
0
5
0
Order By: Relevance
“…And, Ahn()sbadbreak=Jhn()sK1E()s$$\begin{equation*}{A_{hn}}{\mathrm{}}\left( s \right) = \frac{{{J_{hn}}\left( s \right)}}{{{K_1}E\left( s \right)}}\end{equation*}$$ badbreak=nK1W2ss3+nK3Ws2+1+K1n()nW2s+K3()nW3$$\begin{equation} = \frac{{n{K_{1}}{W^2}s}}{{\left( {{s^3} + n{K_{3}}W{s^2} + \left( {1 + \frac{{{K_1}}}{n}} \right){{\left( {nW} \right)}^2}s + {K_{3}}{{\left( {nW} \right)}^3}} \right)}}\end{equation}$$where n is the order of the harmonic components at which the DFSEn filter is tuned. Therefore, the final transfer function can be given by [26, 27]: G1α()sbadbreak=Jα()sJ()sgoodbreak=C1()s[]1ngoodbreak=3,5,7,11Ahn()s$$\begin{equation}{G_{1\alpha }}\left( s \right) = \frac{{{J_\alpha }\left( s \right)}}{{J\left( s \right)}} = {C_1}\left( s \right)\left[ {1 - \mathop \sum \limits_{n = 3,5,7,11} {A_{hn}}\left( s \right)} \right]\end{equation}$$…”
Section: Multi‐level Cascaded Dual Double Fundamental Signal Extracto...mentioning
confidence: 99%
See 3 more Smart Citations
“…And, Ahn()sbadbreak=Jhn()sK1E()s$$\begin{equation*}{A_{hn}}{\mathrm{}}\left( s \right) = \frac{{{J_{hn}}\left( s \right)}}{{{K_1}E\left( s \right)}}\end{equation*}$$ badbreak=nK1W2ss3+nK3Ws2+1+K1n()nW2s+K3()nW3$$\begin{equation} = \frac{{n{K_{1}}{W^2}s}}{{\left( {{s^3} + n{K_{3}}W{s^2} + \left( {1 + \frac{{{K_1}}}{n}} \right){{\left( {nW} \right)}^2}s + {K_{3}}{{\left( {nW} \right)}^3}} \right)}}\end{equation}$$where n is the order of the harmonic components at which the DFSEn filter is tuned. Therefore, the final transfer function can be given by [26, 27]: G1α()sbadbreak=Jα()sJ()sgoodbreak=C1()s[]1ngoodbreak=3,5,7,11Ahn()s$$\begin{equation}{G_{1\alpha }}\left( s \right) = \frac{{{J_\alpha }\left( s \right)}}{{J\left( s \right)}} = {C_1}\left( s \right)\left[ {1 - \mathop \sum \limits_{n = 3,5,7,11} {A_{hn}}\left( s \right)} \right]\end{equation}$$…”
Section: Multi‐level Cascaded Dual Double Fundamental Signal Extracto...mentioning
confidence: 99%
“…The VSC utilizes the current controlled mode (CCM) control algorithm [26] to control the power flow to the grid. The complete diagram depicting the control algorithm is provided in Figure 7.…”
Section: Control Algorithmsmentioning
confidence: 99%
See 2 more Smart Citations
“…A mixed second-and third-order generalized integrator (MSTOGI)-based PLL is presented in [16,17]; it contains an extra branch to the SOGI block to eliminate DC offset and high-frequency harmonics from input signals. The MSTOGI gain affects the filtering capability, dynamic performance, and bandwidth of the SRF-PLL.…”
Section: Introductionmentioning
confidence: 99%