Breast cancer is a major health problem
for women worldwide. Although in vitro culture of
established breast cancer cell lines
is the most widely used model for preclinical assessment, it poorly
represents the behavior of breast cancers in vivo. Acceleration of the development of effective therapeutic strategies
requires a cost-efficient in vitro model that can
more accurately resemble the in vivo tumor microenvironment.
Here, we report the use of a thermoreversible poly(ethylene glycol)-g-chitosan hydrogel (PCgel) as an in vitro breast cancer model. We hypothesized that PCgel could provide a
tumor microenvironment that promotes cultured cancer cells to a more
malignant phenotype with drug and immune resistance. Traditional tissue
culture plates and Matrigel were applied as controls in our studies. In vitro cellular proliferation and morphology, the secretion
of angiogenesis-related growth factors and cytokines, and drug and
immune resistance were assessed. Our results show that PCgel cultures
promoted tumor aggregate formation, increased secretion of various
angiogenesis- and metastasis-related growth factors and cytokines,
and increased tumor cell resistance to chemotherapeutic drugs and
immunotherapeutic T cells. This PCgel platform may offer a valuable
strategy to bridge the gap between standard in vitro and costly animal studies for a wide variety of experimental designs.