The development of a highly sensitive and selective non-enzymatic electrochemical biosensor for precise and accurate determination of multiple disease biomarkers has always been challenging and demanding. The synthesis of novel materials has provided opportunities to fabricate dependable biosensors. In this perspective, we have presented and discussed recent challenges and technological advancements in the development of non-enzymatic cholesterol electrochemical biosensors and recent research trends in the utilization of functional nanomaterials. This review gives an insight into the electrochemically active nanomaterials having potential applications in cholesterol biosensing, including metal/metal oxide, mesoporous metal sulfide, conductive polymers, and carbon materials. Moreover, we have discussed the current strategies for the design of electrode material and key challenges for the construction of an efficient cholesterol biosensor. In addition, we have also described the current issues related to sensitivity and selectivity in cholesterol biosensing.