Background: The present study aimed to investigate the function of miR-3529-3p in lung adenocarcinoma and MnO 2 -SiO 2 -APTES (MSA) as a promising multifunctional delivery agent for lung adenocarcinoma therapy. Methods: Expression levels of miR-3529-3p were evaluated in lung carcinoma cells and tissues by qRT-PCR. The effects of miR-3529-3p on apoptosis, proliferation, metastasis and neovascularization were assessed by CCK-8, FACS, transwell and wound healing assays, tube formation and xenografts experiments. Luciferase reporter assays, western blot, qRT-PCR and mitochondrial complex assay were used to determine the targeting relationship between miR-3529-3p and hypoxia-inducible gene domain family member 1A (HIGD1A). MSA was fabricated using MnO 2 nanoflowers, and its heating curves, temperature curves, IC50, and delivery efficiency were examined. The hypoxia and reactive oxygen species (ROS) production was investigated by nitro reductase probing, DCFH-DA staining and FACS. Results: MiR-3529-3p expression was reduced in lung carcinoma tissues and cells. Transfection of miR-3529-3p could promote apoptosis and suppress cell proliferation, migration and angiogenesis. As a target of miR-3529-3p, HIGD1A expression was downregulated, through which miR-3529-3p could disrupt the activities of complexes III and IV of the respiratory chain. The multifunctional nanoparticle MSA could not only efficiently deliver miR-3529-3p into cells, but also enhance the antitumor function of miR-3529-3p. The underlying mechanism may be that MSA alleviates hypoxia and has synergistic effects in cellular ROS promotion with miR-3529-3p. Conclusions: Our results establish the antioncogenic role of miR-3529-3p, and demonstrate that miR-3529-3p delivered by MSA has enhanced tumor suppressive effects, probably through elevating ROS production and thermogenesis.