The oxygen atom transfer reactivity of Tp( *)MoO(2)(SPh) (1) (where Tp( *)=hydrotris-(3,5-dimethylpyrazol-1-yl)borate) with trimethyl phosphine (PMe(3)) has been investigated. The reaction proceed through a diamagnetic phosphoryl intermediate complex, Tp( *)MoO(SPh)(OPMe(3)) (2), which has been isolated and characterized by IR, NMR, UV-visible spectroscopy, and mass spectrometry. The molecular structure of 2 has been determined by X-ray crystallography. The complex crystallizes in monoclinic (P2(1)/n) space group, a=19.81 (1)A, b=11.1 (4)A, c=18.416 (5)A, beta=121.2 (3) degrees , V=3463.8 (25)A(3) with Z=4. In acetonitrile, complex 2 exchanges its phosphoryl ligand with a solvent molecule resulting in Tp( *)MoO(SPh)(MeCN) (3), which has been isolated and also characterized spectroscopically and by X-ray crystallography. Compound 3 crystallizes in triclinic (P1 ) space group, a=10.159 (6)A, b=18.563 (5)A, c=7.986 (3)A, alpha=96.22 (3) degrees , beta=121.2 (3) degrees , gamma=84.64 (3) degrees , V=1452.4 (11)A(3) with Z=2. The electronic structures of the complexes have been investigated by density functional theory and the redox chemistry has been investigated by cyclic and differential pulse voltammetry. In acetonitrile, complex 2 spontaneously transforms to complex, 3 at a rate of 5.6x10(-4)s(-1).