All over the world, there is a lot of patient health data in different locations such as hospitals, clinics, insurance companies, and other organizations. In this sense, global identification of the patient has emerged as an everyday healthcare challenge. Governments and institutions have to prioritize satisfactory, quick, and integrated decision-making in a wide, dispersed, and global environment because of unexpected challenges like pandemics or threats. In the current scientific literature, some of the existing challenges include support for a standard global unique identification that considers privacy issues, the combination of multiple technological biometry implementations, and personal documents. Thus, we propose a decentralized software model based on blockchain and smart contracts that includes privacy, global unique person identification supporting multiple combinations of documents, and biometric data using the Global Standards 1 -GS1 healthcare industry standard. Furthermore, we defined a methodology to evaluate a hypothetical use case of this model where an integrated and standard global health data sharing personal identification is crucial. For this, we implemented the proposed model in a global-wide continent location through cloud machines, fog computing, and blockchain considering the unique patient data identification and evaluate a use case scenario based on the top 5 most globally visited tourist destinations (France, Spain, the United States of America, China, and Italy), with an approach based on this model. The results show that using a model for a global id for healthcare can help reduce costs, time, and efforts, especially in the context of health threats, where agility and financial support must be prioritized. Blockchain, cloud computing, global identification, gs1, healthcare.
INDEX TERMS