Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Heart failure (HF) remains a major cause of morbidity and mortality worldwide, with limited treatment options. Heart transplantation is an end stage option but limited by donor availability. Left-ventricular assist device (LVAD) implantation serves as a bridging strategy for patients awaiting a transplant. Intriguingly, LVAD support (typically for 6-12 months before heart transplantation) is often associated with some level of improvement in cardiac function and histology. In rare cases, LVAD support can improve cardiac function sufficiently to avoid heart transplantation after LVAD removal. The underlying mechanisms of this improvement in cardiac function are not understood. Here, we provide evidence that the improvement in cardiac function post-LVAD is associated with a reduction in fibrosis and an increase in capillary density. This heart failure recovery (HFR) is also associated with an angiogenic cell fate transition. We observed a distinct pro-angiogenic phenotype of cardiac non-myocytes isolated from post-LVAD hearts. Single-nuclei RNA sequencing of pre- and post-LVAD cardiac tissue reveals a fibroblast subtype that undergoes mesenchymal to endothelial transition (MEndoT), potentially facilitating HFR. In a murine model of HFR, lineage tracing studies confirm that MEndoT is associated with the increase in capillary density and perfusion during HFR. In summary, our results support the new concept that HFR is associated with a reduction in interstitial cardiac fibrosis, an increase in capillary density and perfusion, that is due in part to an angiogenic cell fate transition. Our work represents a shift in the conceptual framework regarding mechanisms of HFR, and a new therapeutic avenue for exploration.
Heart failure (HF) remains a major cause of morbidity and mortality worldwide, with limited treatment options. Heart transplantation is an end stage option but limited by donor availability. Left-ventricular assist device (LVAD) implantation serves as a bridging strategy for patients awaiting a transplant. Intriguingly, LVAD support (typically for 6-12 months before heart transplantation) is often associated with some level of improvement in cardiac function and histology. In rare cases, LVAD support can improve cardiac function sufficiently to avoid heart transplantation after LVAD removal. The underlying mechanisms of this improvement in cardiac function are not understood. Here, we provide evidence that the improvement in cardiac function post-LVAD is associated with a reduction in fibrosis and an increase in capillary density. This heart failure recovery (HFR) is also associated with an angiogenic cell fate transition. We observed a distinct pro-angiogenic phenotype of cardiac non-myocytes isolated from post-LVAD hearts. Single-nuclei RNA sequencing of pre- and post-LVAD cardiac tissue reveals a fibroblast subtype that undergoes mesenchymal to endothelial transition (MEndoT), potentially facilitating HFR. In a murine model of HFR, lineage tracing studies confirm that MEndoT is associated with the increase in capillary density and perfusion during HFR. In summary, our results support the new concept that HFR is associated with a reduction in interstitial cardiac fibrosis, an increase in capillary density and perfusion, that is due in part to an angiogenic cell fate transition. Our work represents a shift in the conceptual framework regarding mechanisms of HFR, and a new therapeutic avenue for exploration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.