Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background Ageing is accompanied by changes in sleep, while poor sleep is suggested as a risk factor for several health outcomes. Non-pharmacological approaches have been proposed to improve sleep in elderly; their impact remains to be investigated. The aim of this study was to examine the independent day-to-day associations of physical behaviours and daylight exposure with sleep characteristics among older adults. Methods Data were drawn from 3942 participants (age range: 60–83 years; 27% women) from the Whitehall II accelerometer sub-study. Day-to-day associations of objectively-assessed daytime physical behaviours (sedentary behaviour, light-intensity physical activity (LIPA), moderate-to-vigorous physical activity (MVPA), mean acceleration, physical activity chronotype) and daylight exposure (proportion of waking window with light exposure > 1000 lx and light chronotype) with sleep characteristics were examined using mixed models. Results A 10%-increase in proportion of the waking period spent sedentary was associated with 5.12-minute (4.31, 5.92) later sleep onset and 1.76-minute shorter sleep duration (95%confidence interval: 0.86, 2.66). Similar increases in LIPA and MVPA were associated with 6.69 (5.67, 7.71) and 4.15 (2.49, 5.81) earlier sleep onset respectively and around 2-minute longer sleep duration (2.02 (0.87, 3.17) and 2.23 (0.36, 4.11), respectively), although the association was attenuated for MVPA after adjustment for daylight exposure (1.11 (− 0.84, 3.06)). A 3-hour later physical activity chronotype was associated with a 4.79-minute later sleep onset (4.15, 5.43) and 2.73-minute shorter sleep duration (1.99, 3.47). A 10%-increase in proportion of waking period exposed to light> 1000 lx was associated with 1.36-minute longer sleep (0.69, 2.03), independently from mean acceleration. Associations found for sleep duration were also evident for duration of the sleep windows with slightly larger effect size (for example, 3.60 (2.37, 4.82) minutes for 10%-increase in LIPA), resulting in associations with sleep efficiency in the opposite direction (for example, − 0.29% (− 0.42, − 0.16) for 10%-increase in LIPA). Overall, associations were stronger for women than for men. Conclusions In this study, higher levels of physical activity and daylight exposure were associated with slightly longer sleep in older adults. Given the small effect sizes of the associations, increased physical activity and daylight exposure might not be enough to improve sleep.
Background Ageing is accompanied by changes in sleep, while poor sleep is suggested as a risk factor for several health outcomes. Non-pharmacological approaches have been proposed to improve sleep in elderly; their impact remains to be investigated. The aim of this study was to examine the independent day-to-day associations of physical behaviours and daylight exposure with sleep characteristics among older adults. Methods Data were drawn from 3942 participants (age range: 60–83 years; 27% women) from the Whitehall II accelerometer sub-study. Day-to-day associations of objectively-assessed daytime physical behaviours (sedentary behaviour, light-intensity physical activity (LIPA), moderate-to-vigorous physical activity (MVPA), mean acceleration, physical activity chronotype) and daylight exposure (proportion of waking window with light exposure > 1000 lx and light chronotype) with sleep characteristics were examined using mixed models. Results A 10%-increase in proportion of the waking period spent sedentary was associated with 5.12-minute (4.31, 5.92) later sleep onset and 1.76-minute shorter sleep duration (95%confidence interval: 0.86, 2.66). Similar increases in LIPA and MVPA were associated with 6.69 (5.67, 7.71) and 4.15 (2.49, 5.81) earlier sleep onset respectively and around 2-minute longer sleep duration (2.02 (0.87, 3.17) and 2.23 (0.36, 4.11), respectively), although the association was attenuated for MVPA after adjustment for daylight exposure (1.11 (− 0.84, 3.06)). A 3-hour later physical activity chronotype was associated with a 4.79-minute later sleep onset (4.15, 5.43) and 2.73-minute shorter sleep duration (1.99, 3.47). A 10%-increase in proportion of waking period exposed to light> 1000 lx was associated with 1.36-minute longer sleep (0.69, 2.03), independently from mean acceleration. Associations found for sleep duration were also evident for duration of the sleep windows with slightly larger effect size (for example, 3.60 (2.37, 4.82) minutes for 10%-increase in LIPA), resulting in associations with sleep efficiency in the opposite direction (for example, − 0.29% (− 0.42, − 0.16) for 10%-increase in LIPA). Overall, associations were stronger for women than for men. Conclusions In this study, higher levels of physical activity and daylight exposure were associated with slightly longer sleep in older adults. Given the small effect sizes of the associations, increased physical activity and daylight exposure might not be enough to improve sleep.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.