Reliable and timely information on socio-economic status and divides is critical to social and economic research and policing. Novel data sources from mobile communication platforms have enabled new cost-effective approaches and models to investigate social disparity, but their lack of interpretability, accuracy or scale has limited their relevance to date. We investigate the divide in digital mobile service usage with a large dataset of 3.7 billion time-stamped and geo-referenced mobile traffic records in a major European country, and find profound geographical unevenness in mobile service usage—especially on news, e-mail, social media consumption and audio/video streaming. We relate such diversity with income, educational attainment and inequality, and reveal how low-income or low-education areas are more likely to engage in video streaming or social media and less in news consumption, information searching, e-mail or audio streaming. The digital usage gap is so large that we can accurately infer the socio-economic status of a small area or even its Gini coefficient only from aggregated data traffic. Our results make the case for an inexpensive, privacy-preserving, real-time and scalable way to understand the digital usage divide and, in turn, poverty, unemployment or economic growth in our societies through mobile phone data.