Terrestrial laser scanning (TLS) enables the efficient production of high-density colored 3D point clouds of real-world environments. An increasing number of applications from visual and automated interpretation to photorealistic 3D visualizations and experiences rely on accurate and reliable color information. However, insufficient attention has been put into evaluating the colorization quality of the 3D point clouds produced applying TLS. We have developed a method for the evaluation of the point cloud colorization quality of TLS systems with integrated imaging sensors. Our method assesses the capability of several tested systems to reproduce colors and details of a scene by measuring objective image quality metrics from 2D images that were rendered from 3D scanned test charts. The results suggest that the detected problems related to color reproduction (i.e., measured differences in color, white balance, and exposure) could be mitigated in data processing while the issues related to detail reproduction (i.e., measured sharpness and noise) are less in the control of a scanner user. Despite being commendable 3D measuring instruments, improving the colorization tools and workflows, and automated image processing pipelines would potentially increase not only the quality and production efficiency but also the applicability of colored 3D point clouds.