Path planning is an essential algorithm in autonomous mobile robots, including agricultural robots, to find the shortest path and to avoid collisions with obstacles. Q-Learning algorithm is one of the reinforcement learning methods used for path planning. However, for multi-robot system, this algorithm tends to produce the same path for each robot. This research modifies the Q-Learning algorithm in order to produce path variations by utilizing the motivation model, i.e. achievement motivation, in which different motivation parameters will result in different optimum paths. The Motivated Q-Learning (MQL) algorithm proposed in this study was simulated in an area with three scenarios, i.e. without obstacles, uniform obstacles, and random obstacles. The results showed that, in the determined scenario, the MQL can produce 2 to 4 variations of optimum path without any potential of collisions (Jaccard similarity = 0%), in contrast to the Q-Learning algorithm that can only produce one optimum path variation. This result indicates that MQL can solve multi-robots path planning problems, especially when the number of robots is large, by reducing the possibility of collisions as well as decreasing the problem of queues. However, the average computational time of the MQL is slightly longer than that of the Q-Learning.