One of the topical areas of research in modern robotics is the problem of local navigation of mobile robots (MR), which ensures the movement of the robot to the target with the bypass of obstacles in the process of movement. The navigation process includes the following steps: mapping the environment, localization of the robot and planning the route leading to the goal. Among the popular methods of local navigation of robots is the method of artificial potential fields (PF). The essence of the PF method is to implement the movement of the MR in the field of "information forces" using the forces of "attraction" to the target position and the forces of "repulsion" from obstacles.This article addresses the issues of local navigation and motion control of the MR based on the method of PF.When using traditional attracting potential forces, the structure of virtual forces near the obstacle depends on the distance of the MR from the target, and the robot movement will slow down at the end of the route, which will inevitably lead to an unjustified tightening of the total time of moving the robot to the target position. To eliminate this undesirable effect, the authors propose to use attracting potential fields of special type.The authors propose new methods of PF allowing to solve the key problems for the control of MR — "traps" (potential pits) and bypass obstacles: the method of two maps of potential fields and the method of "fairway" on the map of potential fields. The methods of "beetle" for solving the problem of bypass obstacles in the condition of the absence of a priori information about the working space of MR are discussed. A modified method of "beetle" having a number of advantages in comparison with classical methods is proposed.