Collaborative navigation is the key technology for multimobile robot system. In order to improve the performance of collaborative navigation system, the collaborative navigation algorithms based on odometer/vision multisource information fusion are presented in this paper. Firstly, the multisource information fusion collaborative navigation system model is established, including mobile robot model, odometry measurement model, lidar relative measurement model, UWB relative measurement model, and the SLAM model based on lidar measurement. Secondly, the frameworks of centralized and decentralized collaborative navigation based on odometer/vision fusion are given, and the SLAM algorithms based on vision are presented. Then, the centralized and decentralized odometer/vision collaborative navigation algorithms are derived, including the time update, single node measurement update, relative measurement update between nodes, and covariance cross filtering algorithm. Finally, different simulation experiments are designed to verify the effectiveness of the algorithms. Two kinds of multirobot collaborative navigation experimental scenes, which are relative measurement aided odometer and odometer/SLAM fusion, are designed, respectively. The advantages and disadvantages of centralized versus decentralized collaborative navigation algorithms in different experimental scenes are analyzed.