Plane strain compression of isotactic polypropylene iPP)/clay nanocomposite in a channel die at 140 and 160 • C, respectively, has been adopted to prepare oriented samples with well-controlled structure for comparative studies. Molecular orientation in the amorphous phase, independent of clay loadings, decreases with increasing preparation temperature, whereas crystallographic orientation is nearly the same for all oriented samples. Severer voiding and void coalescence during stretching, mostly induced by the crystals and inter-chain sliding in the amorphous phase, respectively, is suggested to be responsible for higher volume dilatation and lower failure strain in the oriented samples prepared at higher temperature (e.g., 160 • C). Fracture toughness is well correlated with the molecular orientation and crystal-dependent voiding in the oriented samples with respect to preparation temperatures. Furthermore, debonding of clay in the iPP matrix, especially in the oriented samples prepared at 140 • C, is another contributor to the enhanced toughness.