When coupled with spatio-temporal context, location-based data collected in mobile cellular networks provide insights into patterns of human activity, interactions, and mobility. Whilst uncovered patterns have immense potential for improving services of telecom providers as well as for external applications related to social wellbeing, its inherent massive volume make such 'Big Data' sets complex to process. A significant number of studies involving such mobile phone data have been presented, but there still remain numerous open challenges to reach technology readiness. They include efficient access in privacy-preserving manner, high performance computing environments, scalable data analytics, innovative data fusion with other sources-all finally linked into the applications ready for operational mode. In this chapter, we provide a broad overview of the entire workflow from raw data access to the final applications and point out the critical challenges in each step that need to be addressed to unlock the value of data generated by mobile cellular networks.