Selenium (Se) exhibits a "double-edged" behavior in animal and human nutrition. It is a micronutrient required in low concentrations by animals and humans, but toxic at high concentrations. Selenium deficiency has been associated with cancer and other health problems. Selenium requirements are commonly met through soils and plants such as wheat, rice, vegetables and maize in many countries. Selenium concentration in the soil generally ranges from 0.01-2.0 mg kg-1 but seleniferous soils usually contain more than 5 mg kg-1. Seleniferous soils have been reported in Ireland, China, India and USA. Weathering of parent rocks and atmospheric deposition of volcanic plumes are natural processes increasing Se levels in the environment. Anthropogenic sources of Se include irrigation, fertilizer use, sewage sludge and farmyard manure applications, coal combustion and crude oil processing, mining, smelting and waste incineration. Mobility of Se in the soil-plant system largely depends on its speciation and bioavailability in soil which is controlled by pH and redox potential. Plant uptake of Se varies with plant species and Se bioavailability in the soil. The uptake, translocation, transformation, metabolism, and functions of Se within the plant are further discussed in the paper. The release of Se in soils and subsequent uptake by plants has implications for meeting Se requirements in animals and humans.