The concept is highly critical for robotic technologies that rely on visual feedback. In this context, robot systems tend to be unresponsive due to reliance on pre-programmed trajectory and path, meaning the occurrence of a change in the environment or the absence of an object. This review paper aims to provide comprehensive studies on the recent application of visual servoing and DNN. PBVS and Mobilenet-SSD were chosen algorithms for alignment control of the film handler mechanism of the portable x-ray system. It also discussed the theoretical framework features extraction and description, visual servoing, and Mobilenet-SSD. Likewise, the latest applications of visual servoing and DNN was summarized, including the comparison of Mobilenet-SSD with other sophisticated models. As a result of a previous study presented, visual servoing and MobileNet-SSD provide reliable tools and models for manipulating robotics systems, including where occlusion is present. Furthermore, effective alignment control relies significantly on visual servoing and deep neural reliability, shaped by different parameters such as the type of visual servoing, feature extraction and description, and DNNs used to construct a robust state estimator. Therefore, visual servoing and MobileNet-SSD are parameterized concepts that require enhanced optimization to achieve a specific purpose with distinct tools.