The present paper discusses a new approach for the experimental determination of modal parameters (resonant frequencies, modal shapes and damping coefficients) based on measured displacement values, using the non-contact optical method of digital image correlation (DIC). The output is a newly developed application module that, based on a three-dimensional displacement matrix from the experimental measurement results, can construct a frequency response function (FRF) for the purpose of experimental and operational modal analysis. From this frequency response function, the modal parameters of interest are able to be determined. The application module has been designed for practical use in Scilab 6.1.0, and its code interfaces directly with the ISTRA4D high-speed camera software. The module was built on measurements of a steel plate excited by an impact hammer to simulate experimental modal analysis. Verification of the correctness of the computational algorithm or the obtained modal parameters of the excited sheet metal plate was performed by simulation in the numerical software Abaqus, whose modal shapes and resonant frequencies showed high agreement with the results of the newly developed application.