2018
DOI: 10.1134/s0012266118110095
|View full text |Cite
|
Sign up to set email alerts
|

Modal Controllability of a Delay Differential System by an Incomplete Output

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

0
3
0
2

Year Published

2020
2020
2024
2024

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(5 citation statements)
references
References 7 publications
0
3
0
2
Order By: Relevance
“…System (26) consists of n equations with mk unknown entries of the matrix function R(τ), τ ∈ [σ θ , 0]. Let us rewrite systems (25), (26) in the vector form. By definition of the mapping vec, we have Sp (XY) = (vec X) T • (vec Y T ) for any X ∈ M p,q (K), Y ∈ M q,p (K).…”
Section: Resultsmentioning
confidence: 99%
See 2 more Smart Citations
“…System (26) consists of n equations with mk unknown entries of the matrix function R(τ), τ ∈ [σ θ , 0]. Let us rewrite systems (25), (26) in the vector form. By definition of the mapping vec, we have Sp (XY) = (vec X) T • (vec Y T ) for any X ∈ M p,q (K), Y ∈ M q,p (K).…”
Section: Resultsmentioning
confidence: 99%
“…By definition of the mapping vec, we have Sp (XY) = (vec X) T • (vec Y T ) for any X ∈ M p,q (K), Y ∈ M q,p (K). Let us apply this equality in system (25), for every i = 1, n, to the matrix X = C * J i−1 B and to the matrices Y = Q ρ , ρ = 0, θ, and in system (26), for every i = 1, n, to the matrix X = C * J i−1 B and to Y = R(τ). Let us construct the mk × n-matrix P = [vec(C * B), vec(C * JB), .…”
Section: Resultsmentioning
confidence: 99%
See 1 more Smart Citation
“…В [7] экспоненциальная стабилизация систем с постоянным и переменным запаздыванием обеспечивается решением задачи частичного назначения спектра. Задача назначения полного бесконечного спектра для систем с сосредоточенным запаздыванием изучена в [8], в [9] c помощью алгебраического метода с алгоритмом минимизации спектральной абсциссы, в [10] c использованием метода аппроксимации Галёркина.…”
Section: Introductionunclassified
“…Учитывая равенства (16), (8), 7, получаем, что для системы (1), (2) задача произвольного спектра посредством регулятора (3) разрешима тогда и только тогда, когда найдутся θ 0,…”
Section: Introductionunclassified