It was recently found that cooling the skin to temperatures as mild as 25°-30°C can induce nociceptive sensations (burning, stinging or pricking) that are strongly suppressed by dynamic contact between the thermode and skin (contact suppression). Here we investigated whether nociceptive sensations produced by menthol can be similarly suppressed. In the first experiment subjects rated the intensity of cold and burning/stinging/pricking sensations before and after application of 10% l-menthol to the forearm. Ratings were compared at resting skin temperature (≈ 33°C) and at 28°, 24°, or 20°C during static or dynamic contact cooling via a Peltier thermode. At resting skin temperature, menthol produced cold and nociceptive sensations, both of which were suppressed by dynamic contact. When the skin was cooled during static contact, menthol increased nociceptive sensations but not cold sensations; when the skin was cooled during dynamic contact, cold sensations were again unchanged while nociceptive sensations were suppressed. A second experiment tested whether contact suppression of menthol's cold and nociceptive sensations at resting skin temperature was caused by slight deviations of thermode temperature above skin temperature. The results showed that suppression occurred even when the thermode was slightly cooler (−0.5°C) than the skin. These findings support other evidence that the menthol-sensitive channel, TRPM8, plays a role in cold nociception, and raise new questions about how dynamic tactile stimulation may modify perception of nonpainful cold stimulation.