2022
DOI: 10.48550/arxiv.2202.10107
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Model-Agnostic Augmentation for Accurate Graph Classification

Abstract: Given a graph dataset, how can we augment it for accurate graph classification? Graph augmentation is an essential strategy to improve the performance of graph-based tasks, and has been widely utilized for analyzing web and social graphs. However, previous works for graph augmentation either a) involve the target model in the process of augmentation, losing the generalizability to other tasks, or b) rely on simple heuristics that lead to unreliable results. In this work, we introduce five desired properties fo… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 35 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?