Model Averaging for Accelerated Failure Time Models with Missing Censoring Indicators
Longbiao Liao,
Jinghao Liu
Abstract:Model averaging has become a crucial statistical methodology, especially in situations where numerous models vie to elucidate a phenomenon. Over the past two decades, there has been substantial advancement in the theory of model averaging. However, a gap remains in the field regarding model averaging in the presence of missing censoring indicators. Therefore, in this paper, we present a new model-averaging method for accelerated failure time models with right censored data when censoring indicators are missing… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.