2023
DOI: 10.3390/su15129235
|View full text |Cite
|
Sign up to set email alerts
|

Model-Based Reinforcement Learning Method for Microgrid Optimization Scheduling

Abstract: Due to the uncertainty and randomness of clean energy, microgrid operation is often prone to instability, which requires the implementation of a robust and adaptive optimization scheduling method. In this paper, a model-based reinforcement learning algorithm is applied to the optimal scheduling problem of microgrids. During the training process, the current learned networks are used to assist Monte Carlo Tree Search (MCTS) in completing game history accumulation, and updating the learning network parameters to… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 32 publications
0
0
0
Order By: Relevance