This paper presents the use of a generated artificial road profile in the simulation of a quarter car model for spring durability based-force extraction. In situ measurement of the road loading profile for automotive spring durability analysis, requires considerable cost and effort due to the complex experimental setup. Hence, an artificial road profile was generated for the quarter car model simulation to obtain the spring force signals. Initially, according to the ISO 8608 standard, a class "A" artificial road profile was generated using a designated waviness value, unevenness index and random phase angle. The generated road profile was used as the input to a constructed quarter car model to obtain the spring force signals. Subsequently, the generated nominal force signal was used to predict the fatigue life of the spring. Moreover, to obtain the localise fatigue behaviour of the spring, a finite element spring model together with the force signal was used for fatigue prediction. Under this class "A" road excitation, the spring possessed very high fatigue life of 1.87 × 10 6 blocks to failure. Further, a series of spring variant was analysed for fatigue life through this road class excitation. The relationship between spring stiffness and fatigue lives established using power regression and the coefficient of determination (R 2) as high as 0.9815 was obtained. Therefore, this analysis will assist in automobile spring design regarding fatigue when road load data is not available.