2019
DOI: 10.36595/misi.v2i2.105
|View full text |Cite
|
Sign up to set email alerts
|

Model Data Mining Untuk Karekteristik Data Traveller Pada Perusahaan Tour and Travel

Abstract: Bagi perusahaan yang bergerak dibidang sektor jasa, seperti perusahaan tour and travel pengolahan data sangatlah penting untuk mengetahui karakteristik atau minat wisatawan dalam berwisata. Sulitnya memprediksi kebutuhan atau minat wisatawan, merupakan kendala yang dihadapi perusahaan tour and travel sehingga manajemen harus dapat mengambil keputusan yang tepat dan cepat, guna memberikan pelayanan yang baik serta kepuasan kepada customer. Keputusan yang diambil harus mempertimbangkan dengan baik berdasarkan da… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 2 publications
0
1
0
Order By: Relevance
“…Predictive accuracy c (X → Y) = Pr (r meets Y | r meets X) is the conditional probability of Y ⊆ r given that X ⊆ r when the distribution r is set by P. Mining association rules that can help forecast depressive symptoms and identify undergraduate students who need special care have been made possible by the Predictive Apriori algorithm employed in Youth Suicide Prevention by Screening Depressive Symptoms. [10]. Similar research was also conducted using an a priori predictive algorithm to strengthen the data to be carried out to predict data [11].…”
Section: Predictive Apriori Algorithmmentioning
confidence: 99%
“…Predictive accuracy c (X → Y) = Pr (r meets Y | r meets X) is the conditional probability of Y ⊆ r given that X ⊆ r when the distribution r is set by P. Mining association rules that can help forecast depressive symptoms and identify undergraduate students who need special care have been made possible by the Predictive Apriori algorithm employed in Youth Suicide Prevention by Screening Depressive Symptoms. [10]. Similar research was also conducted using an a priori predictive algorithm to strengthen the data to be carried out to predict data [11].…”
Section: Predictive Apriori Algorithmmentioning
confidence: 99%