Subject Nowadays, traditional methods may hardly forecast how prices for assets will go. The scenario-based approach becomes more widely spread in various sciences, including financial mathematics. The key idea of the scenario-based approach is a scenario tree representing the hierarchical structure of data, outlining how things may unfold, and evaluating the probability. This approach helps model various scenarios of the future situation, thus allowing to make appropriate decisions. Objectives The research produces a one-period scenario tree showing how the price for the asset may develop. We also analyze the sensitivity of the parameter influencing the number of descendants of vertices. Methods The research is based on the economic-mathematic model of the geometric (Brownian) motion, which is expressed through the stochastic differential equation. The model and sensitivity analysis are implemented in MATLAB. We also applied methods of comparative and static analysis, graphic interpretation. Results We constructed a one-period scenario tree for a change in the options price. Having analyzed the sensitivity of the descendant vertex parameter, we determined the optimal range of option strike price intervals. Conclusions and Relevance We chose the geometric motion model as the basis for the scenario-based approach since it helps construct the one-period scenario tree. This approach allows to evaluate the scenario probability. However, its weakness is that it generates the unoptimal number of descendant vertex of a tree. Furthermore, the market situation requires to test the asset for liquidity through various metrics. For example, the number of deals and trading volume.