This paper proposes a distributed adaptive dynamic programming scheme to investigate the optimal tracking control problem for finite-horizon non-linear interconnected systems with constraint inputs under aperiodic sampling. A N-player nonzero-sum differential game system is constructed with the presented non-linear interconnected system and the tracking error system by introducing the augment vectors. To address the problems of constrained-input and finite-horizon control, a non-quadratic utility function and a finitehorizon cost function are utilized which will arise in the time-varying Hamilton-Jacobi (HJ) equation. Then, a periodic event-triggered scheme is designed to realize aperiodic sampling, where the consumption of communication resources is reduced and the Zeno behavior is avoided. Under the designed periodic event-triggered scheme, the time-varying HJ equation is almost impossible to get an analytical solution due to its hybrid properties and non-linearity. Therefore, the critic neural networks are used to estimate the optimal solution of the HJ equation, and the weight update law is constructed to guarantee the uniformly ultimate bounded of approximated errors. Further, the hybrid nonzero-sum differential game is confirmed to be uniformly ultimate bounded by using the Lyapunov theory. Finally, the obtained distributed PET control strategy is successfully applied to dispose the missile-target intercepter problem. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.