2021
DOI: 10.4173/mic.2021.4.5
|View full text |Cite
|
Sign up to set email alerts
|

Model-Free All-Source-All-Destination Learning as a Model for Biological Reactive Control

Abstract: We present here a model-free method for learning actions that lead to an all-source-all-destination shortest path solution. We motivate our approach in the context of biological learning for reactive control. Our method involves an agent exploring an unknown world with the objective of learning how to get from any starting state to any goal state in shortest time without having to run a path planning algorithm for each new goal selection. Using concepts of Lyapunov functions and Bellman's principle of optimali… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 15 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?