2015
DOI: 10.1016/j.amc.2015.02.001
|View full text |Cite
|
Sign up to set email alerts
|

Model order reduction for nonlinear Schrödinger equation

Abstract: We apply the proper orthogonal decomposition (POD) to the nonlinear Schrö-dinger (NLS) equation to derive a reduced order model. The NLS equation is discretized in space by finite differences and is solved in time by structure preserving symplectic mid-point rule. A priori error estimates are derived for the POD reduced dynamical system. Numerical results for one and two dimensional NLS equations, coupled NLS equation with soliton solutions show that the low-dimensional approximations obtained by POD reproduce… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
3
0
1

Year Published

2015
2015
2024
2024

Publication Types

Select...
6

Relationship

1
5

Authors

Journals

citations
Cited by 8 publications
(4 citation statements)
references
References 10 publications
0
3
0
1
Order By: Relevance
“…In the following, we introduce the SIPG method [8,52] for the spatial discretization of NLSE. We remark that among the three common interior penalty Galerkin discretizations, nonsymmetric interior penalty Galerkin (NIPG), and incomplete interior penalty Galerkin (IIPG), only SIPG leads to a Hamiltonian system of ODEs [36].…”
Section: Full Order Modelmentioning
confidence: 99%
See 1 more Smart Citation
“…In the following, we introduce the SIPG method [8,52] for the spatial discretization of NLSE. We remark that among the three common interior penalty Galerkin discretizations, nonsymmetric interior penalty Galerkin (NIPG), and incomplete interior penalty Galerkin (IIPG), only SIPG leads to a Hamiltonian system of ODEs [36].…”
Section: Full Order Modelmentioning
confidence: 99%
“…With increasing number of the modes, the singular values decay rather slowly. We choose in the ROM the number of POD modes k = 10 which satisfies the energy criterion (36) with ε 10 > 0.9999. In Fig.…”
Section: Defocusing Nlse With Progressive Wave Solutionsmentioning
confidence: 99%
“…Es decir, se observa que el comportamiento de los solitones a propagarse a lo largo de fibras ópticas es importante para los sistemas de transmisión de información, ya que al contrarrestarse los efectos de dispersión de primer orden es posible transmitir pulsos más cortos a mayores distancias, permitiendo reducir los costos de implementación y funcionamiento de un sistema comunicaciones óptico. Los resultados obtenidos esta en concordancia con los reportados en [20], donde solucionan numéri-camente la ecuación de Schrödinger no lineal por el método de descomposición ortogonal evidenciando la no distorsión de perfil a lo largo de una guía de propagación del pulso.…”
Section: Conclusionesunclassified
“…In order to solve the problem of modal truncation, many scholars have made in-depth research and achieved certain results [25,26,27,28,29]. Among them, the modal acceleration method [26] is put forward on the basis of combining the special solution of the motion equation with the existing modal when the excitation frequency is zero, which can improve the vibration response analysis to some extent, especially in the lower frequency range.…”
Section: Introductionmentioning
confidence: 99%