Applied and Computational Control, Signals, and Circuits 2001
DOI: 10.1007/978-1-4615-1471-8_7
|View full text |Cite
|
Sign up to set email alerts
|

Model Reduction Software in the SLICOT Library

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
32
0
2

Year Published

2002
2002
2023
2023

Publication Types

Select...
3
3
2

Relationship

1
7

Authors

Journals

citations
Cited by 42 publications
(34 citation statements)
references
References 16 publications
0
32
0
2
Order By: Relevance
“…In SLICOT wird dies entweder durch additive Zerlegung derÜbertragungsfunktion in den stabilen und instabilen Anteil oder durch teilerfremde Faktorisierung (mit stabilen Faktoren) und anschliessender Anwendung der Methoden für stabile LTI-Systeme auf die resultierenden stabilen Anteile derÜbertragungsfunktion realisiert, siehe z.B. [37].…”
Section: Performance-resultateunclassified
“…In SLICOT wird dies entweder durch additive Zerlegung derÜbertragungsfunktion in den stabilen und instabilen Anteil oder durch teilerfremde Faktorisierung (mit stabilen Faktoren) und anschliessender Anwendung der Methoden für stabile LTI-Systeme auf die resultierenden stabilen Anteile derÜbertragungsfunktion realisiert, siehe z.B. [37].…”
Section: Performance-resultateunclassified
“…There exist many different methods that can be used for model reduction of stable systems [2]. However, those working with the state-space representation of the system are usually more adequate for a parallel implementation.…”
Section: Model Reduction Of Stable Systemsmentioning
confidence: 99%
“…However, later work showed that, for some systems, when large distribution block sizes are used, the accuracy of the reduced models is far from that obtained using the equivalent sequential routines of SLICOT [2].…”
Section: Introductionmentioning
confidence: 99%
“…It should be emphasized that the methods just described for solving 2.4and 2.5 significantly differ from standard methods used in the MATLAB toolboxes or SLICOT [26]. First, the proposed LR-ADI iteration for the solution of the dual Lyapunov equation exploits the sparsity in the coefficient matrix.…”
Section: An Analogous Iteration Involving Amentioning
confidence: 99%