2009 International Conference on Artificial Intelligence and Computational Intelligence 2009
DOI: 10.1109/aici.2009.414
|View full text |Cite
|
Sign up to set email alerts
|

Model Reference Adaptive Control of a Class of Uncertain Nonlinear Systems Based on Neural Networks

Abstract: The paper deals with the problem of model reference adaptive control of a class of uncertain nonlinear systems by output feedback based on neural networks. The uncertainty of the system can not be parameterized and its upper bound is unknown. In order to approximate the uncertainty via neural networks, a technique of global approximation of continuous functions is introduced. Based on the technique, a method of designing adaptive tracking controllers for the systems is presented, which guarantees that all sign… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 11 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?