A Bayesian model averaging (BMA) framework is presented to evaluate the worth of different observation types and experimental design options for (1) more confidence in model selection and (2) for increased predictive reliability. These two modeling tasks are handled separately because model selection aims at identifying the most appropriate model with respect to a given calibration data set, while predictive reliability aims at reducing uncertainty in model predictions through constraining the plausible range of both models and model parameters. For that purpose, we pursue an optimal design of measurement framework that is based on BMA and that considers uncertainty in parameters, measurements, and model structures. We apply this framework to select between four crop models (the vegetation components of CERES, SUCROS, GECROS, and SPASS), which are coupled to identical routines for simulating soil carbon and nitrogen turnover, soil heat and nitrogen transport, and soil water movement. An ensemble of parameter realizations was generated for each model using Monte-Carlo simulation. We assess each model's plausibility by determining its posterior weight, which signifies the probability to have generated a given experimental data set. Several BMA analyses were conducted for different data packages with measurements of soil moisture, evapotranspiration (ET a ), and leaf area index (LAI). The posterior weights resulting from the different BMA runs were compared to the weight distribution of a reference run with all data types to investigate the utility of different data packages and monitoring design options in identifying the most appropriate model in the ensemble. We found that different (combinations of) data types support different models and none of the four crop models outperforms all others under all data scenarios. The best model discrimination was observed for those data where the competing models disagree the most. The data worth for reducing prediction uncertainty depends on the prediction to be made. LAI data have the highest utility for predicting ET a , while soil moisture data are better for predicting soil water drainage. Our study illustrates, that BMA provides an objective framework for data worth analysis with respect to both model discrimination and model calibration for a wide range of applications.