In water-related projects, the application of steel sheet pile cofferdams is becoming more and more widespread, and the influence of tunnel construction on the mechanical properties of adjacent cofferdams is important. In this study, the object of research was the mechanical properties of large-span steel sheet pile cofferdams. The open-cut tunnel project was located in Suzhou Yinshan Lake, China. According to the actual construction steps of the tunnel foundation pit, assuming that the soil was a small strain hardening soil model, combined with on-site monitoring data, a three-dimensional elastoplastic finite difference model was established. The results show that during tunnel construction, the maximum settlement of the cofferdam appeared at 0.27~0.53 m on the side of the foundation pit; the maximum horizontal displacement of the steel sheet pile occurred at the pile bottom of foundation pit side, and the seepage gradually increased during construction, eventually resulting in water gushing at the bottom of the foundation pit. After the completion of tunnel construction, the settlement value of the cofferdam presented a pattern that first increased and then decreased from the side of the foundation pit to the side of the adjacent lakeside; the steel cofferdam tilted toward the side of the foundation pit, with a maximum inclination angle of 3.37°. It should be pointed out that as the construction progressed, the axial force of the tie rods in the steel cofferdam changed from a U-shaped distribution to a V-shaped distribution. This study could provide a reference for the impact of tunnel foundation pit construction on adjacent steel cofferdam and could also provide a reference for the safety research of open-cut tunnel construction.