Model theory of finite-by-Presburger Abelian groups and finite extensions of $p$-adic fields
Jamshid Derakhshan,
Angus Macintyre
Abstract:We define a class of pre-ordered abelian groups that we call finite-by-Presburger groups, and prove that their theory is model-complete. We show that certain quotients of the multiplicative group of a local field of characteristic zero are finite-by-Presburger and interpret the higher residue rings of the local field. We apply these results to give a new proof of the model completeness in the ring language of a local field of characteristic zero (a result that follows also from work of Prestel-Roquette).
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.