Algorithms, Technologies, and Applications for Multispectral and Hyperspectral Imaging XXIX 2023
DOI: 10.1117/12.2666070
|View full text |Cite
|
Sign up to set email alerts
|

Model validity dynamics in learned spectroscopic recognition of satellites

Abstract: Recent work demonstrates that convolutional neural networks can be trained to recognize artificial satellites from spatially unresolved ground-based observations (SpectraNet). SpectraNet enables space domain awareness (SDA) catalogs to be enriched with object identity, a critical source of information for space domain stakeholders. As learned spectral SDA matures, conditions for training and deploying performant and calibrated neural network recognition algorithms must be measured. In this work we present a si… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 18 publications
(24 reference statements)
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?