Monograph:Pan, Y., Billings, S.A. and Zhao, Y. (2007) The identification of coupled map lattice models for autonomous cellular neural network patterns. Research Report. ACSE Research Report no. 949 . Automatic Control and Systems Engineering, University of Sheffield eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/ Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version -refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.
TakedownIf you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. Sheffield University, Sheffield, S1 3JD, UK
March, 2007Abstract The identification problem for spatiotemporal patterns which are generated by autonomous Cellular Neural Networks (CNN) is investigated in this paper. The application of traditional identification algorithms to these special spatiotemporal systems can produce poor models due to the inherent piecewise nonlinear structure of CNN. To solve this problem, a new type of Coupled Map Lattice model with output constraints and corresponding identification algorithms are proposed in the present study. Numerical examples show that the identified CML models have good prediction capabilities even over the long term and the main dynamics of the original patterns appears to be well represented.