This paper describes wave prediction results for Patos Lagoon's northern sector through numerical modeling using Delft3D software. ERA-Interim satellite reanalysis data of wind intensity and direction were used as inputs to force the hydrodynamic model. For SWAN calibration and validation in the study region, wave parameters were used. These parameters were acquired in situ by a directional waverider buoy. Statistical data showed the good performance of the model, albeit with a tendency to overestimate significant wave height and underestimate peak period and propagation direction. Once validated, wave parameters for five points at different depths were obtained during the four seasons of the year between 2017 and 2018. In general, it was observed that the largest ripples come from the S and SSW directions and occurred during spring at the deepest point under wind conditions exceeding 10 m s -1 . Ripples up to 0.30 m account for 77.9 % at the shallowest point and 65.7 % at the deepest point. Thus, the study area was classified as low energy and characterized by small, high-frequency, short-period ripples strongly influenced and determined by the local depth because larger ripples are always observed in the deepest locations, giving the lagoon a characteristic of depth-limited ripples. The results obtained here have the potential to contribute to territorial management of the region, with emphasis on the Integral Protection Conservation Unit located in the study area (Itapuã State Park) and on the development and safety of the important, heavily used navigation route that connects Rio Grande Port to the state capital, Porto Alegre.