1993
DOI: 10.1006/jcph.1993.1081
|View full text |Cite
|
Sign up to set email alerts
|

Modeling a No-Slip Flow Boundary with an External Force Field

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

2
688
0
10

Year Published

2000
2000
2018
2018

Publication Types

Select...
6
2

Relationship

0
8

Authors

Journals

citations
Cited by 1,080 publications
(700 citation statements)
references
References 0 publications
2
688
0
10
Order By: Relevance
“…This Poisson equation is solved with a highly efficient geometric multigrid method [3] which employs a Gauss-Siedel line-SOR smoother [38]. Once the pressure correction is obtained, the pressure and velocity are updated as (11) (12) (13) These separately updated face-velocities satisfy discrete mass-conservation to machine accuracy and use of these velocities in estimating the non-linear convective flux in equation (3) leads to a more accurate and robust solution procedure. The advantage of separately computing the face-center velocities was initially proposed by Zang et al [53] and discussed in the context of the Cartesian grid methods in Ye et al [51].…”
Section: Governing Equations and Discretization Schemementioning
confidence: 99%
See 2 more Smart Citations
“…This Poisson equation is solved with a highly efficient geometric multigrid method [3] which employs a Gauss-Siedel line-SOR smoother [38]. Once the pressure correction is obtained, the pressure and velocity are updated as (11) (12) (13) These separately updated face-velocities satisfy discrete mass-conservation to machine accuracy and use of these velocities in estimating the non-linear convective flux in equation (3) leads to a more accurate and robust solution procedure. The advantage of separately computing the face-center velocities was initially proposed by Zang et al [53] and discussed in the context of the Cartesian grid methods in Ye et al [51].…”
Section: Governing Equations and Discretization Schemementioning
confidence: 99%
“…(24) is used as the velocity boundary condition in advancing the flow equations (Eqs. [3][4][5][6][7][8][9][10][11][12][13] which ensures that at the end of the time-step, the boundary and flow velocities are compatible. The general framework described above can therefore be considered as EulerianLagrangian, wherein the immersed boundaries are explicitly tracked as surfaces in a Lagrangian mode, while the flow computations are performed on a fixed Eulerian grid.…”
Section: Boundarymentioning
confidence: 99%
See 1 more Smart Citation
“…To represent curved, no-slip walls in the uniform, cubic lattice, a forcing technique has been developed [22], based on a similar technique developed by Goldstein et al in the framework of spectral methods [23], and by Balaras [24], and Verzicco et al [25] for finite volume schemes (the latter authors call it the immersed boundary technique). In our forcing technique, the wall surface is represented by a large set of control points r j with a nearest neighbor distance slightly less than the lattice spacing.…”
Section: Simulation Proceduresmentioning
confidence: 99%
“…The main concept of this particular numerical method is to impose an external force field at the fluid grid points adjacent to the solid boundary in the same manner as would the solid boundary. This branch of numerical methods was studied extensively for biological flow, multi-phase flow and problems with elastic boundary [6][7][8][9][10][11][12]. One of the major drawbacks of the immersed-boundary method is the smoothing of the external force field that could lead to smearing of interface information.…”
Section: Introductionmentioning
confidence: 99%