Due to its tunable heterojunction bandgap and great sensitivity to normal incident illumination, the Quantum Dot Infrared Photodetectors (QDIPs) have received a lot of attention for the purpose of infrared sensing. It could be a very promising replacement for conventional infrared photodetectors made with established technology, including mercury cadmium telluride and quantum well infrared photodetectors. In this work, a model for the dark current in semispherical QDIP has been developed, resolves the primary semiconductor Poisson's and continuity equations, where the wave function and the bound states effects are investigated. In this study, Boltzmann transport equation in the photodetector active layer with embedded QDs is solved using the finite difference time domain method to determine the photodetector carrier mobility and its degradation due the quantum dot scattering. The outcomes of the presented have been contrasted with truncated conical QDIPs showing that smaller volume QDs had less noisy dark current. Investigations have been done into how the semispherical QDIP's dark current characteristics are affected by the QD volume, density, and operating temperature.