Proceedings of the 15th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems 2012
DOI: 10.1145/2387238.2387273
|View full text |Cite
|
Sign up to set email alerts
|

Modeling and connectivity analysis in obstructed wireless ad hoc networks

Abstract: Connectivity properties of wireless networks in open space are typically modeled using geometric random graphs and have been analyzed in depth in different studies. Such scenarios, however, do not often represent situations encountered in practice, like urban environments or indoor spaces, which are deeply affected by obstacles. In this work, we present a model for obstructed wireless ad hoc networks consisting of a set of n nodes, deployed at random in a lattice square of size g×g, with a common transmission … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
6
0

Year Published

2013
2013
2013
2013

Publication Types

Select...
1

Relationship

1
0

Authors

Journals

citations
Cited by 1 publication
(6 citation statements)
references
References 15 publications
0
6
0
Order By: Relevance
“…A preliminary analysis of the MaxNorm model was presented in [1]. However, as shown in Section 5, it resulted in much higher (worse) values for the critical street width (i.e., for the minimal street width that induces a valid CTR for connectivity) and low-quality approximation to the Euclidean model, which is more realistic but leads to a very complex analysis.…”
Section: Geometric "Layer"mentioning
confidence: 99%
See 4 more Smart Citations
“…A preliminary analysis of the MaxNorm model was presented in [1]. However, as shown in Section 5, it resulted in much higher (worse) values for the critical street width (i.e., for the minimal street width that induces a valid CTR for connectivity) and low-quality approximation to the Euclidean model, which is more realistic but leads to a very complex analysis.…”
Section: Geometric "Layer"mentioning
confidence: 99%
“…W.l.o.g., we consider that positions of nodes reflect the Euclidean distances from each node to the intersection point between segments. There exists at least one link between two nodes in different perpendicular segments if and only if there is a link between X (1) and Y (1) . Considering r ≥ √ 8 , we can compute p ⊥ (μ) by…”
Section: Probability Of Connectivitymentioning
confidence: 99%
See 3 more Smart Citations