These days a Two-wheel inverted pendulum (TWIP) robot attracts public attention as it is an efficient ergonomics and easy to operate by nuance personals. Furthermore it has attractive design features like compact in size and zero turning radius. However, the traditional TWIP robots have to change its posture to reach the desired speedup and deceleration by changing the robot posture forward and backward make it difficult to control its motion process. Thus, this paper presents here the Mamdami fuzzy control logic to overcome the motion control of Multi-DOF TWIP robot and make its motion smooth and steady control. By introducing two additional DOFs the slider and the swinging configuration, the robot can maintain its vertical posture even climbing and descending on slopes. To validate the robustness of the proposed method, classic PID controller is introduced for comparison in simulations and experiments. The simulation results demonstrate the effectiveness of the system design and the better performance in robustness over classic PID control strategy. Finally, the control scheme is implemented on the practical self-designed hardware. 2010 Mathematics Subject Classification. 93C42. Key words and phrases. Two-wheel inverted pendulum, Mamdami fuzzy control, robustness, multi-DOF, velocity control.