Inspired by the behavior of birds, we present AirCrab, a hybrid aerial ground manipulator (HAGM) with a single active wheel and a 3-degree of freedom (3-DoF) manipulator. AirCrab leverages a single point of contact with the ground to reduce position drift and improve manipulation accuracy. The single active wheel enables locomotion on narrow surfaces without adding significant weight to the robot. To realize accurate attitude maintenance using propellers on the ground, we design a control allocation method for AirCrab that prioritizes attitude control and dynamically adjusts the thrust input to reduce energy consumption. Experiments verify the effectiveness of the proposed control method and the gain in manipulation accuracy with ground contact. A series of operations to complete the letters 'NTU' demonstrates the capability of the robot to perform challenging hybrid aerialground manipulation missions.
SUPPLEMENTARY MATERIALA video summarizing the approach and experiments is available at https://youtu.be/Q1n-IiIt400.