THE PURPOSE. The main purpose of the work is a comprehensive study of external influences that affect the operational reliability of low-voltage asynchronous motors. Attention is focused on the evaluation of the operational reliability of electric motors, the systematization of their operating conditions, with the simultaneous impact of a group of operational factors. Among these factors that are subject to detailed analysis, we will highlight the following: the asymmetry of the stress and its duration, loading of the motor, the temperature of the environment. In this regard, it becomes obvious that the task of improving the operational reliability of low-voltage asynchronous electric motors depends on a qualitative study of the quantitative values of external influencing factors in various operating modes of electric motors. METHODS. The tool for implementing this task is a visual and effective simulation tool Simulink interactive programming environment Matlab. RESULTS. The research was performed on an asynchronous electric motor with a short-circuited rotor AIR160S8 with PH = 7,5 kW, rated speed n = 1500 rpm. The physical processes of the electric motor under study were modeled by changing the following parameters: the coefficient of stress asymmetry in the reverse sequence (K2U), the load on the motor shaft (Kz), the ambient temperature (tocr), and the duration of stress asymmetry in the reverse sequence (T). Based on the obtained simulation results, groups of planes of the studied quantities are constructed. CONCLUSION. A set of studies performed using the Matlab software package allowed us to estimate the limits of acceptable values of external factors and identify the area of acceptable operation of asynchronous motors. The analysis and discussion of the research results were carried out, and measures were proposed to improve the operational reliability of asynchronous electric motors.