Gas quenching and vacuum quenching process are widely applied to accelerate solvent volatilization to induce nucleation of perovskites in blade-coating method. In this work, we found these two pre-crystallization processes lead to different order of crystallization dynamics within the perovskite thin film, resulting in the differences of additive distribution. We then tailor-designed an additive molecule named 1,3-bis(4-methoxyphenyl)thiourea to obtain films with fewer defects and holes at the buried interface, and prepared perovskite solar cells with a certified efficiency of 23.75%. Furthermore, this work also demonstrates an efficiency of 20.18% for the large-area perovskite solar module (PSM) with an aperture area of 60.84 cm2. The PSM possesses remarkable continuous operation stability for maximum power point tracking of T90 > 1000 h in ambient air.