2018
DOI: 10.1016/j.cherd.2018.02.017
|View full text |Cite
|
Sign up to set email alerts
|

Modeling and multi-objective optimization of vacuum membrane distillation for enhancement of water productivity and thermal efficiency in desalination

Abstract: Water productivity and thermal efficiency in membrane distillation (MD) have been the main research targets, for the aims of commercial application in desalination. The comprehensive understanding of the influence of module configuration parameters, operating conditions and their interaction on MD performance is the key for MD commercialization. In this paper, the multi-objective modeling and optimization in the vacuum membrane distillation were performed by response surface methodology and desirability functi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2

Citation Types

0
6
0
1

Year Published

2018
2018
2023
2023

Publication Types

Select...
7
1

Relationship

1
7

Authors

Journals

citations
Cited by 23 publications
(7 citation statements)
references
References 50 publications
0
6
0
1
Order By: Relevance
“…The RSM modelling approach is a visualisation technique based on mathematical statistics and can plot a 3D response surface with two variables [ 27 , 28 , 31 , 119 ]. In this approach, polynomial fits are conducted for sets of experimental data to form an adequate representation of the experimental response.…”
Section: Modelling Approachesmentioning
confidence: 99%
See 2 more Smart Citations
“…The RSM modelling approach is a visualisation technique based on mathematical statistics and can plot a 3D response surface with two variables [ 27 , 28 , 31 , 119 ]. In this approach, polynomial fits are conducted for sets of experimental data to form an adequate representation of the experimental response.…”
Section: Modelling Approachesmentioning
confidence: 99%
“…The experimental data are foundational for RSM. The data used in the RSM normally include solute concentration, stream velocity, temperature, flux, GOR, vapour pressure and energy input [ 27 , 29 , 31 , 121 , 122 ]. However, all these data should be from the identical systems, and the predicted results should be strictly applicable to these identical systems.…”
Section: Modelling Approachesmentioning
confidence: 99%
See 1 more Smart Citation
“…However, not only the temperature affects the performance of MD modules but also the feed water flow rate [26]. The optimal management of this variable is specially relevant because a tradeoff solution must be adopted to maximize both thermal efficiency and distillate production in current commercial-scale MD modules [19,27], thus requiring properly formulated optimization problems.…”
Section: Introductionmentioning
confidence: 99%
“…En la mayoría de ellos se utiliza la metodología RSM para predecir el flujo de destilado, como es el caso de Fadhil et al(2019); Elzahaby et al (2016); Khalifa and Lawal (2016); Bouguecha et al (2016); Mohammadi et al (2015); Boubakri et al (2014); Khayet and Matsuura (2011); Khayet and Cojocaru(2012a);Khayet et al (2007). Por el contrario, solo unos pocos predicen aparte del flujo del destilado algúníndice de desempeño relacionado con el consumo térmico del módulo como el STEC o el GOR(Gil et al, 2018c;Ruiz-Aguirre et al, 2018;Cheng et al, 2018;Ruiz-Aguirre et al, 2017;He et al, 2014). Además, en casi todos los trabajos se utilizan como variables de entrada la temperatura y caudal del agua de alimentación y la temperatura a la entrada del canal de evaporación del módulo, y solo enGil et al (2018c);Mohammadi et al (2015);Khayet et al (2007) se incluye la salinidad del agua de alimentación como entrada del modelo.…”
unclassified