Molecular mechanisms and process kinetics of crystallizing concomitant polymorphs remain poorly understood. Solvent-mediated phase transformation and concomitant crystallization are difficult to be distinguished in practice, as multiple forms can be detected at the same time. Herein, we developed a population balance model to simulate a concomitant crystallization process of two polymorphs of tolfenamic acid. Our kinetic modeling aims to understand concomitant crystallization and help guide form selection of such a molecular system. Crystallization kinetics of ethanolic solutions were uncovered from induction time measurements, as well as seeded and unseeded crystallization experiments. Experimental and simulation results demonstrate that the stable form I crystallizes concomitantly with the metastable form II. The faster growing form II results in an intermediate decline in the composition of form I in crystallized samples, a characteristic feature of the concomitantly crystallized system. A four-quadrant scheme of attainable polymorph outcome was simulated under various crystallization conditions.